Bandgap Engineering of Two-Dimensional Double Perovskite Cs4AgBiBr8/WSe2 Heterostructure from Indirect Bandgap to Direct Bandgap by Introducing Se Vacancy

Author:

Cai Yiwei1,Lu Zhengli2,Xu Xin2,Gao Yujia2,Shi Tingting23ORCID,Wang Xin14ORCID,Shui Lingling15

Affiliation:

1. School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510006, China

2. Siyuan Laboratory, Department of Physics, Jinan University, Guangzhou 510632, China

3. Guangzhou Key Laboratory of Vacuum Coating Technologies and New Energy Materials, Jinan University, Guangzhou 510632, China

4. International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou 510006, China

5. Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Device, South China Normal University, Guangzhou 510006, China

Abstract

Heterostructures based on layered materials are considered next-generation photocatalysts due to their unique mechanical, physical, and chemical properties. In this work, we conducted a systematic first-principles study on the structure, stability, and electronic properties of a 2D monolayer WSe2/Cs4AgBiBr8 heterostructure. We found that the heterostructure is not only a type-II heterostructure with a high optical absorption coefficient, but also shows better optoelectronic properties, changing from an indirect bandgap semiconductor (about 1.70 eV) to a direct bandgap semiconductor (about 1.23 eV) by introducing an appropriate Se vacancy. Moreover, we investigated the stability of the heterostructure with Se atomic vacancy in different positions and found that the heterostructure was more stable when the Se vacancy is near the vertical direction of the upper Br atoms from the 2D double perovskite layer. The insightful understanding of WSe2/Cs4AgBiBr8 heterostructure and the defect engineering will offer useful strategies to design superior layered photodetectors.

Funder

Outstanding Youth Project of Guangdong Natural Science Foundation

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3