A Note on Stronger Forms of Sensitivity for Non-Autonomous Dynamical Systems on Uniform Spaces

Author:

Jiao Lixin12,Wang Heyong1,Wang Lidong2,Wang Nan3

Affiliation:

1. Department of Electronic Business, South China University of Technology, Guangzhou 510006, China

2. School of Disciplinary Basics and Applied Statistics, Zhuhai College of Science and Technology (Zhuhai College of Jilin University), Zhuhai 519041, China

3. School of Mathematics, Jilin University, Changchun 130012, China

Abstract

This paper introduces the notion of multi-sensitivity with respect to a vector within the context of non-autonomous dynamical systems on uniform spaces and provides insightful results regarding N-sensitivity and strongly multi-sensitivity, along with their behaviors under various conditions. The main results established are as follows: (1) For a k-periodic nonautonomous dynamical system on a Hausdorff uniform space (S,U), the system (S,fk∘⋯∘f1) exhibits N-sensitivity (or strongly multi-sensitivity) if and only if the system (S,f1,∞) displays N-sensitivity (or strongly multi-sensitivity). (2) Consider a finitely generated family of surjective maps on uniform space (S,U). If the system (S,f1,∞) is N-sensitive, then the system (S,fk,∞) is also N-sensitive. When the family f1,∞ is feebly open, the converse statement holds true as well. (3) Within a finitely generated family on uniform space (S,U), N-sensitivity (and strongly multi-sensitivity) persists under iteration. (4) We present a sufficient condition under which an nonautonomous dynamical system on infinite Hausdorff uniform space demonstrates N-sensitivity.

Funder

Project of Guangdong Natural Science Foundation

Guangzhou Philosophy and Social Science

Guangdong Philosophy and Social Science

Innovation and Cultivation Project of Zhuhai College of Science and Technology

PhD Promotion Program of Zhuhai College of Science

Publisher

MDPI AG

Reference36 articles.

1. On the nature of turbulence;Ruelle;Commun. Math. Phys.,1971

2. Interval maps, factors of maps and chaos;Auslander;Tôhoku Math. J.,1980

3. Devaney, R.L. (1989). Addison-Wesley Studies in Nonlinearity, Addison-Wesley Publishing Company.

4. On Devaney’s defnition of chaos;Banks;Am. Math. Mon.,1992

5. Sensitive dependence on initial conditions;Glasner;Nonlinearity,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3