Neural Causal Information Extractor for Unobserved Causes

Author:

Leong Keng-Hou12ORCID,Xiu Yuxuan12ORCID,Chen Bokui13ORCID,Chan Wai Kin (Victor)124ORCID

Affiliation:

1. Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China

2. Tsinghua-Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China

3. Peng Cheng Laboratory, Shenzhen 518055, China

4. International Science and Technology Information Center, Shenzhen 518055, China

Abstract

Causal inference aims to faithfully depict the causal relationships between given variables. However, in many practical systems, variables are often partially observed, and some unobserved variables could carry significant information and induce causal effects on a target. Identifying these unobserved causes remains a challenge, and existing works have not considered extracting the unobserved causes while retaining the causes that have already been observed and included. In this work, we aim to construct the implicit variables with a generator–discriminator framework named the Neural Causal Information Extractor (NCIE), which can complement the information of unobserved causes and thus provide a complete set of causes with both observed causes and the representations of unobserved causes. By maximizing the mutual information between the targets and the union of observed causes and implicit variables, the implicit variables we generate could complement the information that the unobserved causes should have provided. The synthetic experiments show that the implicit variables preserve the information and dynamics of the unobserved causes. In addition, extensive real-world time series prediction tasks show improved precision after introducing implicit variables, thus indicating their causality to the targets.

Funder

Science and Technology Innovation Commission of Shenzhen

National Natural Science Foundation of China

Guangdong Pearl River Plan

High-End Foreign Expert Talent Introduction Plan

Tsinghua Shenzhen International Graduate School Fund

Science and Technology Innovation Committee of Shenzhen-Platform and Carrier

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3