Abstract
This paper presents a dynamic health intelligent evaluation model proposed to analyze the health deterioration of satellites under time-varying and extreme thermal loads. New definitions such as health degree and failure factor and new topological system considering the reliability relationship are proposed to characterize the dynamic performance of health deterioration. The dynamic health intelligent evaluation model used the thermal network method (TNM) and fuzzy reasoning to solve the problem of model missing and non-quantization between temperature and failure probability, and it can quickly evaluate and analyze the dynamic health of satellite through the collaborative processing of continuous event and discrete event. In addition, the temperature controller in the thermal control subsystem (TCM) is the target of thermal damage, and the effects of different heat load amplitude, duty ratio, and cycle on its health deterioration are compared and analyzed.
Subject
General Physics and Astronomy
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献