Abstract
Low-complexity nonlinear equalization is critical for reliable high-speed short-reach optical interconnects. In this paper, we compare the complexity, efficiency and stability performance of pruned Volterra series-based equalization (VE) and neural network-based equalization (NNE) for 112 Gbps vertical cavity surface emitting laser (VCSEL) enabled optical interconnects. The design space of nonlinear equalizers and their pruning algorithms are carefully investigated to reveal fundamental reasons of powerful nonlinear compensation capability and restriction factors of efficiency and stability. The experimental results show that NNE has more than one order of magnitude bit error rate (BER) advantage over VE at the same computation complexity and pruned NNE has around 50% lower computation complexity compared to VE at the same BER level. Moreover, VE shows serious performance instability due to its intricate structure when communication channel conditions become tough. Moreover, pruned VE presents more consistent equalization performance within varying bias values than NNE.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献