Abstract
Permissioned blockchains can be applied for sharing data among permitted users to authorise the data access requests in a permissioned blockchain. A consensus network constructed using pre-selected nodes should verify a data requester’s credentials to determine if he or she have the correct permissions to access the queried data. However, current studies do not consider how to protect users’ privacy for data authorisation if the pre-selected nodes become untrusted, e.g., the pre-selected nodes are manipulated by attackers. When a user’s credentials are exposed to pre-selected nodes in the consensus network during authorisation, the untrusted (or even malicious) pre-selected nodes may collect a user’s credentials and other private information without the user’s right to know. Therefore, the private data exposed to the consensus network should be tightly restricted. In this paper, we propose a challenge-response based authorisation scheme for permissioned blockchain networks named Challenge-Response Assisted Access Authorisation (CRA3) to protect users’ credentials during authorisation. In CRA3, the pre-selected nodes in the consensus network do not require users’ credentials to authorise data access requests to prevent privacy leakage when these nodes are compromised or manipulated by attackers. Furthermore, the computational burden on the consensus network for authorisation is reduced because the major computing work of the authorisation is executed by the data requester and provider in CRA3.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Reference30 articles.
1. Bitcoin: A Peer-to-peer Electronic Cash Systemhttps://nakamotoinstitute.org/bitcoin/
2. Bitav: Fast anti-malware by distributed blockchain consensus and feedforward scanning;Noyes;arXiv,2016
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献