Author:
Iliuta Ion,Larachi Faïçal
Abstract
Seawater scrubbing of nitrogen oxides and sulfur oxide from marine emissions was simulated in packed-bed columns exposed to static inclination and heaving/oscillating motions. Fourth generation random packings (Raschig super-Rings) while providing much smaller pressure drop than traditional Pall-Rings ensure comparable absorption efficiency for the pollutants. Complete removal of SO2 was predicted over the tested pressure range with absorption efficiency indifferent to scrubber inclination or heaving/oscillating motions. In contrast, NOx and CO2 absorptions are negatively impacted for inclined seawater scrubbers. Removal efficiency is not lowered significantly owing to larger scrubber pressure and because diffusion of N2O4 into the liquid phase is associated with a rapid pseudo first-order reaction. The asymmetrical oscillating motion of the scrubber degrades the removal performance which exhibits wavy patterns close to the steady-state solution of the average inclination angle. NO and CO2 absorption performance waves are moving toward a steady-state solution of vertical scrubber when the asymmetry of the two inclined positions of the scrubber downgrades. Symmetric oscillation and heaving motion led to performance disturbance waves around a steady-state solution of the vertical scrubber which are determined by the parameters of angular/heaving motion.
Subject
Physical and Theoretical Chemistry,Catalysis
Cited by
21 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献