Hydrodeoxygenation (HDO) of Aliphatic Oxygenates and Phenol over NiMo/MgAl2O4: Reactivity, Inhibition, and Catalyst Reactivation

Author:

Dabros Trine Marie Hartmann,Andersen Mads Lysgaard,Lindahl Simon Brædder,Hansen Thomas Willum,Høj MartinORCID,Gabrielsen Jostein,Grunwaldt Jan-DierkORCID,Jensen Anker DegnORCID

Abstract

This study provides new insights into sustainable fuel production by upgrading bio-derived oxygenates by catalytic hydrodeoxygenation (HDO). HDO of ethylene glycol (EG), cyclohexanol (Cyc), acetic acid (AcOH), and phenol (Phe) was investigated using a Ni-MoS2/MgAl2O4 catalyst. In addition, HDO of a mixture of Phe/EG and Cyc/EG was studied as a first step towards the complex mixture in biomass pyrolysis vapor and bio-oil. Activity tests were performed in a fixed bed reactor at 380–450 °C, 27 bar H2, 550 vol ppm H2S, and up to 220 h on stream. Acetic acid plugged the reactor inlet by carbon deposition within 2 h on stream, underlining the challenges of upgrading highly reactive oxygenates. For ethylene glycol and cyclohexanol, steady state conversion was obtained in the temperature range of 380–415 °C. The HDO macro-kinetics were assessed in terms of consecutive dehydration and hydrogenation reactions. The results indicate that HDO of ethylene glycol and cyclohexanol involve different active sites. There was no significant influence from phenol or cyclohexanol on the rate of ethylene glycol HDO. However, a pronounced inhibiting effect from ethylene glycol on the HDO of cyclohexanol was observed. Catalyst deactivation by carbon deposition could be mitigated by oxidation and re-sulfidation. The results presented here demonstrate the need to address differences in oxygenate reactivity when upgrading vapors or oils derived from pyrolysis of biomass.

Funder

Innovationsfonden

Publisher

MDPI AG

Subject

Physical and Theoretical Chemistry,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3