Characteristics of Generic Dielectric Materials and Char as Bed Materials of a Dielectric Barrier Discharge Reactor under High Temperature and Wide Frequency Range

Author:

Arumugam SaravanakumarORCID,Schröder Philipp,Schoenemann Thomas,Neubauer York

Abstract

This paper investigates the characteristics of generic dielectric materials and char, which are intended to be used as the fixed bed materials of a non-thermal-plasma (NTP)-based dielectric barrier discharge (DBD) reactor. Such data are very essential when upgrading the fixed bed to a fluidised bed, which may provide further improvement in the production and quality of the producer gas. This measure would eventually cause a better producer gas and effective biomass-based power generation. Pertinent data that are currently available focus on either improving the design requirements of the producer gas or studying the impact of individual dielectric-material-specific applications to produce useful gases by decomposing the polluting gases. Considering that there has only been a meagre attempt to gather this information, this study gains its importance. In this context, the collective electrical behaviour of bed materials viz. quartz-sand, olivine, and char under ambient and higher temperatures is recorded and their frequency dependencies are analysed. First, the electrical behaviour of the chosen materials is resolved over a wide frequency range. For this purpose, two test cells, i.e., one for the ambient conditions and the other for higher temperatures, are built. Subsequently, the surface and volumetric properties of the chosen bed materials under ambient and higher temperatures are studied. As these materials are not as conductive as metal, such an approach is necessary to understand the apparent behaviour of the materials and anticipate their direct or indirect effects in the presence of non-thermal plasma. In summary, the data from the test cell under ambient and higher temperatures and the influence of materials in the dielectric barrier discharge reactor qualitatively define the material usage and may provide an opportunity to optimise their performance.

Funder

German Federal Ministry of Education

University of Rostock, High Voltage and High Current Technologies

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3