Advanced Study of Spray Cooling: From Theories to Applications

Author:

Zhang Tianshi,Mo Ziming,Xu Xiaoyu,Liu Xiaoyan,Chen Haopeng,Han Zhiwu,Yan Yuying,Jin Yingai

Abstract

With the continuous integration and miniaturization of electronic devices, the heat transfer of the electronic devices continues to surge. This means that thermal management equipment with higher heat flux cooling capacity is required to maintain its normal operation. This paper systematically reviews the progress of spray cooling. In the first part, the thermal dissipation mechanism of spray cooling in the non-boiling regime and boiling regime are summarized, and the correlation formula of heat transfer is summarized. In the second part, the influencing factors of various parameters of the nozzle are summarized, the experimental research and numerical simulation research are summarized separately, and some means and methods to strengthen heat transfer are listed. In the third part, we summarize the current application research of spray cooling in some hot new fields, including electronic technology, aerospace, biomedicine, battery safety, etc. The research prospects and challenges in these fields are highlighted. This research provides a timely and necessary study of spray cooling.

Funder

National Natural Science Foundation of China

Science and Technology Department of Sichuan Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference178 articles.

1. Application status and prospect of spray cooling in electronics and energy conversion industries;Chen;Sustain. Energy Technol. Assess.,2022

2. Two-phase spray cooling for high ambient temperature data centers: Evaluation of system performance;Kandasamy;Appl. Energy,2022

3. Experimental Investigation of Spray Cooling Performance in Non-Boiling Zone on Rough Super hydrophilic/Hydrophobic Surfaces;Huang;Int. J. Energy Res.,2022

4. Spray Cooling on Enhanced Surfaces: A Review of the Progress and Mechanisms;Xu;J. Electron. Packag.,2021

5. Energy saving potential of using heat pipes for CPU cooling;Wang;Appl. Therm. Eng.,2018

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3