Load Frequency Model Predictive Control of a Large-Scale Multi-Source Power System

Author:

Afaneh Tayma,Mohamed OmarORCID,Abu Elhaija WejdanORCID

Abstract

With increased interests in affordable energy resources, a cleaner environment, and sustainability, more objectives and operational obligations have been introduced to recent power plant control systems. This paper presents a verified load frequency model predictive control (MPC) that aims to satisfy the load demand of three practical generation technologies, which are wind energy systems, clean coal supercritical (SC) power plants, and dual-fuel gas turbines (GTs). Simplified state-space models for the two thermal units were constructed by concepts of subspace identification, whereas the individual wind turbine integration was implicated by the Hammerstein–Wiener (HW) model and then augmented from the output to simulate the effect of a wind farm, assuming similar power harvesting from all turbines in the farm. A practical strategy of control was then suggested, which was as follows: with a changing load demand, the available harvested wind energy must be fully admitted to the network to cover part of the load demand with the free energy, and the resultant load signal will then be instructed to the MPCs designed for the coal and gas units for the coordination of generation. The load signal, after being penetrated by wind, has more transients and faster changes, and needs a more sophisticated control in order to follow the load demand of the flexible coal and gas units. Furthermore, as the level of wind penetration increases, the power system frequency excursions are higher. The simulation results show an acceptable performance for linear MPCs embedded to the GT and coal units, with around a 90 MW share of wind without exceeding the safe restrictions of the plants and allowable reasonable frequency excursions. The complete simulation framework can be used to facilitate wind energy penetration in such power systems and train the operators and future engineers with subsequent power system frequency simulation studies.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference33 articles.

1. Staffell, I., Jansen, M., Chase, A., Cotton, E., and Lewis, C. (2018). Energy Revolution: Global Outlook, Drax.

2. Wood, A.J., Wollenberg, B.F., and Sheblé, G.B. (2013). Power Generation, Operation, and Control, John Wiley & Sons.

3. Saadat, H. (2002). Power System Analysis TMH, McGraw Hill.

4. Weedy, B.M., Cory, B.J., Jenkins, N., Ekanayake, J.B., and Strbac, G. (2012). Electric Power Systems, John Wiley & Sons.

5. Mohamed, O.R.I. (2012). Study of Energy Efficient Supercritical Coal-Fired Power Plant Dynamic Responses and Control Strategies. [Ph.D. Thesis, University of Birmingham].

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3