Improved Operation and Stability of a Wind-Hydro Microgrid by Means of a Li-Ion Battery Energy Storage

Author:

Sebastián RafaelORCID

Abstract

This article presents an isolated microgrid which combines two renewable power generators: a Hydraulic-Turbine-Generator (HTG) and a Wind-Turbine-Generator (WTG) with a Li-ion battery-energy-storage (BES). Depending on the generator(s) which supply active power, the microgrid can operate in three modes: Hydro-Only (HO), Wind-Hydro (WH) and Wind-Only (WO). In WH mode, the HTG supplies the difference between the power demanded by the consumers and the power supplied by the WTG. This net demanded power can be negative when the WTG power is greater than the load and this situation can lead to a microgrid collapse. This article shows by means of simulations how the BES is controlled to consume the WTG power excess guaranteeing the microgrid stability. Additionally, when the negative net demanded load is persistent the microgrid must transition from WH mode to WO mode, where only the WTG supplies active power, and this WH-WO transition is also simulated. In the simulations in WO mode, the BES is controlled to regulate the microgrid frequency. The needed controls to command the BES in WH and WO modes and in the WH-WO transition are also explained. The simulations show the effectiveness of using the BES since the microgrid stability and reliability is improved.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3