Federated System for Transport Mode Detection

Author:

Cavalcante Iago C.ORCID,Meneguette Rodolfo I.ORCID,Torres Renato H.ORCID,Mano Leandro Y.ORCID,Gonçalves Vinícius P.ORCID,Ueyama JóORCID,Pessin GustavoORCID,Amvame Nze Georges D.ORCID,Rocha Filho Geraldo P.ORCID

Abstract

Data on transport usage is important in a wide range of areas. These data are often obtained manually through costly and inaccurate interviews. In the last decade, several researchers explored the use of smartphone sensors for the automatic detection of transport modes. However, such works have focused on developing centralized machine learning mechanisms. This centralized approach requires user data to be transferred to a central server and, therefore, does not satisfy a transport mode detection mechanism’s practical response time and privacy needs. This research presents the Federated System for Transport Mode Detection (FedTM). The main contribution of FedTM is exploring Federated Learning on transport mode detection using smartphone sensors. In FedTM, both the training and inference process is moved to the client side (smartphones), reducing response time and increasing privacy. The FedTM was designed using a Neural Network for the classification task and obtained an average accuracy of 80.6% in three transport classes (cars, buses and motorcycles). Other contributions of this work are: (i) The use of data collected only on the curves of the route. Such reduction in data collection is important, given that the system is decentralized and the training and inference phases take place on smartphones with less computational capacity. (ii) FedTM and centralized classifiers are compared with regard to execution time and detection performance. Such a comparison is important for measuring the pros and cons of using Federated Learning in the transport mode detection task.

Funder

FAPESP

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3