Review of Closed SCO2 and Semi-Closed Oxy–Fuel Combustion Power Cycles for Multi-Scale Power Generation in Terms of Energy, Ecology and Economic Efficiency

Author:

Rogalev Nikolay,Rogalev Andrey,Kindra VladimirORCID,Zlyvko Olga,Bryzgunov PavelORCID

Abstract

Today, with the increases in organic fuel prices and growing legislative restrictions aimed at increasing environmental safety and reducing our carbon footprint, the task of increasing thermal power plant efficiency is becoming more and more topical. Transforming combusting fuel thermal energy into electric power more efficiently will allow the reduction of the fuel cost fraction in the cost structure and decrease harmful emissions, especially greenhouse gases, as less fuel will be consumed. There are traditional ways of improving thermal power plant energy efficiency: increasing turbine inlet temperature and utilizing exhaust heat. An alternative way to improve energy efficiency is the use of supercritical CO2 power cycles, which have a number of advantages over traditional ones due to carbon dioxide’s thermophysical properties. In particular, the use of carbon dioxide allows increasing efficiency by reducing compression and friction losses in the wheel spaces of the turbines; in addition, it is known that CO2 turbomachinery has smaller dimensions compared to traditional steam and gas turbines of similar capacity. Furthermore, semi-closed oxy–fuel combustion power cycles can reduce greenhouse gases emissions by many times; at the same time, they have characteristics of efficiency and specific capital costs comparable with traditional cycles. Given the high volatility of fuel prices, as well as the rising prices of carbon dioxide emission allowances, changes in efficiency, capital costs and specific greenhouse gas emissions can lead to a change in the cost of electricity generation. In this paper, key closed and semi-closed supercritical CO2 combustion power cycles and their promising modifications are considered from the point of view of energy, economic and environmental efficiency; the cycles that are optimal in terms of technical and economic characteristics are identified among those considered.

Funder

Ministry of Science and Higher Education of the Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference47 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3