A Bibliometric and Visualized Overview of Hydrogen Embrittlement from 1997 to 2022

Author:

Zhou ChilouORCID,Ren YingjieORCID,Yan Xinrui,Zheng Yiran,Liu Baoqing

Abstract

The mechanical properties of materials deteriorate when hydrogen embrittlement (HE) occurs, seriously threatening the reliability and durability of the hydrogen system. Therefore, it is important to summarize the status and development trends of research on HE. This study reviewed 6676 publications concerned with HE from 1997 to 2022 based on the Web of Science Core Collection. VOSviewer was used to conduct the bibliometric analysis and produce visualizations of the publications. The results showed that the number of publications on HE increased after 2007, especially between 2017 and 2019. Japan was the country with the highest numbers of productive authors and citations of publications, and the total number of citations of Japanese publications was 24,589. Kyushu University was the most influential university, and the total number of citations of Kyushu University publications was 7999. Akiyama was the most prolific and influential author, publishing 88 publications with a total of 2565 citations. The USA, South Korea and some European countries are also leading in HE research; these countries have published more than 200 publications. It was also found that the HE publications generally covered five topics: “Hydrogen embrittlement in different materials”, “Effect of hydrogen on mechanical properties of materials”, “Effect of alloying elements or microstructure on hydrogen embrittlement”, “Hydrogen transport”, and “Characteristics and mechanisms of hydrogen related failures”. Research hotspots included “Fracture failure behavior and analysis”, “Microstructure”, “Hydrogen diffusion and transport”, “Mechanical properties”, “Hydrogen resistance”, and so on. These covered the basic methods and purposes of HE research. Finally, the distribution of the main subject categories of the publications was determined, and these categories covered various topics and disciplines. This study establishes valuable reference information for the application and development of HE research and provides a convenient resource to help researchers and scholars understand the development trends and research directions in this field.

Funder

National Key Research and Development Program of China

Science and Technology Program of Guangzhou

Guangdong Basic and Applied Basic Research Foundation

National Foreign Expert Program

National Natural Science Foundation of China

Key-Area Research and Development Program of Guangdong Province

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3