Hybrid Model-Based BESS Sizing and Control for Wind Energy Ramp Rate Control

Author:

Tadie Abebe TilahunORCID,Guo Zhizhong,Xu Ying

Abstract

This paper presents a hybrid model constituting dynamic smoothing technique and particle swarm optimization techniques to optimally size and control battery energy storage systems for wind energy ramp rate control and power system frequency performance enhancement. In today’s modern power system, a high-proportion renewable energy grid is inevitable. This high-proportion renewable energy grid is a power system with abundant integration of renewable energy resources under the presence of energy storage tools. Energy storage tools are integrated into such power systems to balance the fluctuation and intermittence of renewable energy sources. One of the requirements in a high-proportion renewable energy grid is the fractional power balance between generation and load. One of the requirements set by power system regulators is the generation variation between two time points. A power producer is mandated to satisfy the ramp rate requirement set by the grid owner. This paper proposes dynamic smoothing techniques for initial size determination and particle swarm optimization based on optimal sizing and control of battery energy storage systems for ramp rate control and frequency regulation performance of a power system integrated with a large percentage of wind energy systems. Wind energy data taken from Zhangjiakou wind farm in China are used. The results indicate that the battery energy storage system improves the ramp rate characteristics of the wind farm. In addition, the virtual inertia capability of the battery energy storage system enabled the transient and steady-state frequency response of the test power system to improve significantly.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference31 articles.

1. Storage requirements for PV power ramp-rate control;Marcos;Solar Energy,2014

2. On the relation between battery size and PV power ramp rate limitation;Makibar;Solar Energy,2017

3. Zhao, Q., Xian, L., Roy, S., Kong, X., and Khambadkone, A.M. (2017, January 3–7). Optimal control of PV ramp rate using multiple energy storage system. Proceedings of the 2017 IEEE 3rd International Future Energy Electronics Conference and ECCE Asia (IFEEC 2017-ECCE Asia), Kaohsiung, Taiwan.

4. Sizing and operation of hybrid energy storage systems to perform ramp-rate control in PV power plants;Alvaro;Int. J. Electr. Power Energy Syst.,2019

5. Coordinated operation of wind power and other resources considering power system requirements;Wang;J. Renew. Sustain. Energy,2015

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3