Experimental Analysis of Hot-Mix Asphalt (HMA) Mixtures with Reclaimed Asphalt Pavement (RAP) in Railway Sub-Ballast

Author:

Fiore Nicola1,Bruno Salvatore1ORCID,Del Serrone Giulia1ORCID,Iacobini Franco2,Giorgi Gabriella1,Rinaldi Alessandro2,Moretti Laura1ORCID,Duranti Gian Marco2,Peluso Paolo1ORCID,Vita Lorenzo1ORCID,D’Andrea Antonio1ORCID

Affiliation:

1. Department of Civil, Constructional and Environmental Engineering, Sapienza University of Rome, Via Eudossiana 18, 00184 Rome, Italy

2. Technical Department, Rete Ferroviaria Italiana S.p.a., Piazza della Croce Rossa 1, 00161 Rome, Italy

Abstract

Environmental safeguards promote innovative construction technologies for sustainable pavements. On these premises, this study investigated four hot mix asphalt (HMA) mixtures—i.e., A, B, C, and D—for the railway sub-ballast layer with 0%, 10%, 20%, and 30% reclaimed asphalt pavement (RAP) by total aggregate mass and a rejuvenator additive, varying the bitumen content between 3.5% and 5.0%. Both Marshall and gyratory compactor design methods have been performed, matching the stability, indirect tensile strength, and volumetric properties of each mixture. Dynamic stiffness and fatigue resistance tests provided mechanical performances. Laboratory results highlighted that the RAP and the rejuvenator additive increase the mechanical properties of the mixtures. In addition, the comparative analysis of production costs revealed up to 20% savings as the RAP content increased, and the life cycle impact analysis (LCIA) proved a reduction of the environmental impacts (up to 2% for resource use-fossils, up to 7% for climate change, and up to 13% for water use). The experimental results confirm that HMA containing RAP has mechanical performances higher than the reference mixture with only virgin raw materials. These findings could contribute to waste management and reduce the environmental and economic costs, since the use of RAP in the sub-ballast is not, so far, provided in the Italian specifications for railway construction.

Funder

Rete Ferroviaria Italiana S.p.a.

Department of Civil, Constructional and Environmental Engineering

Publisher

MDPI AG

Subject

General Materials Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3