Analytical Solution of the Susceptible-Infected-Recovered/Removed Model for the Not-Too-Late Temporal Evolution of Epidemics for General Time-Dependent Recovery and Infection Rates

Author:

Schlickeiser Reinhard12ORCID,Kröger Martin3ORCID

Affiliation:

1. Institut für Theoretische Physik, Lehrstuhl IV: Weltraum- und Astrophysik, Ruhr-Universität Bochum, D-44780 Bochum, Germany

2. Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstr. 15, D-24118 Kiel, Germany

3. Magnetism and Interface Physics & Computational Polymer Physics, Department of Materials, ETH Zurich, CH-8093 Zurich, Switzerland

Abstract

The dynamical equations of the susceptible-infected-recovered/removed (SIR) epidemics model play an important role in predicting and/or analyzing the temporal evolution of epidemic outbreaks. Crucial input quantities are the time-dependent infection (a(t)) and recovery (μ(t)) rates regulating the transitions between the compartments S→I and I→R, respectively. Accurate analytical approximations for the temporal dependence of the rate of new infections J˚(t)=a(t)S(t)I(t) and the corresponding cumulative fraction of new infections J(t)=J(t0)+∫t0tdxJ˚(x) are available in the literature for either stationary infection and recovery rates or for a stationary value of the ratio k(t)=μ(t)/a(t). Here, a new and original accurate analytical approximation is derived for general, arbitrary, and different temporal dependencies of the infection and recovery rates, which is valid for not-too-late times after the start of the infection when the cumulative fraction J(t)≪1 is much less than unity. The comparison of the analytical approximation with the exact numerical solution of the SIR equations for different illustrative examples proves the accuracy of the analytical approach.

Publisher

MDPI AG

Subject

General Medicine

Reference60 articles.

1. A contribution to the mathematical theory of epidemics;Kermack;Proc. R. Soc. A,1927

2. Deterministic and stochastic epidemics in closed populations;Kendall;Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability,1956

3. Exact analytical solutions of the susceptible-infected-recovered (SIR) epidemic model and of the SIR model with equal death and birth rates;Harko;Appl. Math. Comput.,2014

4. Analytical solution of the SIR-model for the temporal evolution of epidemics. Part A: Time-independent reproduction factor;Schlickeiser;J. Phys. A,2020

5. Analytical solution of the SIR-model for the temporal evolution of epidemics: Part B. Semi-time case;Schlickeiser;J. Phys. A,2021

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3