Two Dimensional Axisymmetric Simulation Analysis of Vegetation Combustion Particles Movement in Flame Gap under DC Voltage

Author:

Pu ZihengORCID,Zhou Chenqu,Xiong Yuyao,Wu Tian,Zhao Guowei,Yang Baodong,Li Peng

Abstract

In recent years, extreme high temperature weather occurs frequently, which easily causes forest fires. The forest fire is prone to the trip accident of the transmission line. Previous studies show that charged combustion particles cause electric field distortion in the gap below the transmission line, and trigger discharges near the conductor area. The motion and distribution characteristics of combustion particles in the gap have an important influence on the discharge characteristics. Therefore, the size and morphology of combustion particles are analyzed through combustion experiments with typical vegetation. The combustion particles are mainly affected by the air drag force, electric field force and gravity. The interaction and influence of temperature, fluid, electric field and the multi-physical field of particle motion are comprehensively analyzed. A two dimensional (2D) axisymmetric simulation model is established by simplifying the flame region. According to the heat release rate of vegetation flame combustion, the fluid temperature and velocity are calculated. Combined with the fluid field and electric field, the forces on particles and movement are calculated. The results can provide a basis for the analysis of the electric field distortion, and further study the discharge mechanism of the gap under the condition of vegetation flame.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference18 articles.

1. Analysis of influential factors on operation safety of transmission line and countermeasures;Hu;High Volt. Eng.,2014

2. A real-time analysis approach and its application for transmission-line trip risk due to wildfire disaste;Zhou;Proc. CSEE,2017

3. Ultra High Voltage Transmission in China: Developments, Current Status and Future Prospects

4. Measurement of Breakdown Electric Field Strength for Vegetation and Hydrocarbon Flames

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3