Author:
Zhang Qitao,Wei Chenji,Wang Yuhe,Du Shuyi,Zhou Yuanchun,Song Hongqing
Abstract
Machine learning technology is becoming increasingly prevalent in the petroleum industry, especially for reservoir characterization and drilling problems. The aim of this study is to present an alternative way to predict water saturation distribution in reservoirs with a machine learning method. In this study, we utilized Long Short-Term Memory (LSTM) to build a prediction model for forecast of water saturation distribution. The dataset deriving from monitoring and simulating of an actual reservoir was utilized for model training and testing. The data model after training was validated and utilized to forecast water saturation distribution, pressure distribution and oil production. We also compared standard Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU) which are popular machine learning methods with LSTM for better water saturation prediction. The results show that the LSTM method has a good performance on the water saturation prediction with overall AARD below 14.82%. Compared with other machine learning methods such as GRU and standard RNN, LSTM has better performance in calculation accuracy. This study presented an alternative way for quick and robust prediction of water saturation distribution in reservoir.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
32 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献