Potential for Prediction of Water Saturation Distribution in Reservoirs Utilizing Machine Learning Methods

Author:

Zhang Qitao,Wei Chenji,Wang Yuhe,Du Shuyi,Zhou Yuanchun,Song Hongqing

Abstract

Machine learning technology is becoming increasingly prevalent in the petroleum industry, especially for reservoir characterization and drilling problems. The aim of this study is to present an alternative way to predict water saturation distribution in reservoirs with a machine learning method. In this study, we utilized Long Short-Term Memory (LSTM) to build a prediction model for forecast of water saturation distribution. The dataset deriving from monitoring and simulating of an actual reservoir was utilized for model training and testing. The data model after training was validated and utilized to forecast water saturation distribution, pressure distribution and oil production. We also compared standard Recurrent Neural Network (RNN) and Gated Recurrent Unit (GRU) which are popular machine learning methods with LSTM for better water saturation prediction. The results show that the LSTM method has a good performance on the water saturation prediction with overall AARD below 14.82%. Compared with other machine learning methods such as GRU and standard RNN, LSTM has better performance in calculation accuracy. This study presented an alternative way for quick and robust prediction of water saturation distribution in reservoir.

Funder

Beijing Nova Program

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference55 articles.

1. Experimental research on remaining oil distribution and recovery performances after nano-micron polymer particles injection by direct visualization

2. Electrical resistivity an aid in core-analysis interpretation;Archie;AAPG Bull.,1947

3. Capillary Behavior in Porous Solids

4. Basic Applied Reservoir Simulation,2001

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3