Abstract
Ultra-violet (UV) C (200–280 wavelength) light has long been known for its antimicrobial and disinfecting efficacy. It damages DNA by causing the dimerization of pyrimidines. A newly designed technology (MUVi-UVC; Mobile UV Innovations Pty Ltd., Melbourne, VIC, Australia) that emits UVC at 240 nm is composed of an enclosed booth with three UVC light stands each with four bulbs, and has been developed for disinfecting mobile medical equipment. The aim of this project was to examine the spectrum of antimicrobial activity of this device. The experiments were designed following ASTM E1052-20, EN14561, BSEN14476-2005, BSEN14562-2006 and AOAC-Official-Method-966.04 standards for surface disinfection after drying microbes on surfaces. The disinfection was analyzed using Staphylococcus aureus (ATCC 6538), Pseudomonas aeruginosa (6294), Candida auris (CBS 12373), spores of Aspergillus niger (ATCC 16404), coronavirus (SARS-CoV-2 surrogate ATCC VR-261) as well as a methicillin-resistant Staphylococcus aureus (SA31), a carbapenem- and polymyxin-resistant Pseudomonas aeruginosa (PA219), Escherichia coli K12 (ATCC 10798) and Salmonella typhi (ATCC 700730). The parameters of time, the number of lights and direction of the sample facing the lights were examined. The MUVi-UVC was able to kill 99.999% of all of the tested bacteria, fungi, coronavirus and bacteria in the biofilms if used for 5 min using all three lights in the setup with the glass slides in a vertical position. However, for fungal spores, 30 min were required to achieve 99.999% killing. There was a small but insignificant effect of having the surface horizontally or vertically aligned to the UV lights. Therefore, this UVC device is an effective technology to disinfect medical devices.
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献