Towards a Smart City: Development and Application of an Improved Integrated Environmental Monitoring System

Author:

Wong ManORCID,Wang Tingneng,Ho HungORCID,Kwok Coco,Lu Keru,Abbas SawaidORCID

Abstract

Environmental deprivation is an issue influencing the urban wellbeing of a city. However, there are limitations to spatiotemporally monitoring the environmental deprivation. Thus, recent studies have introduced the concept of “Smart City” with the use of advanced technology for real-time environmental monitoring. In this regard, this study presents an improved Integrated Environmental Monitoring System (IIEMS) with the consideration on nine environmental parameters: temperature, relative humidity, PM2.5, PM10, CO, SO2, volatile organic compounds (VOCs), UV index, and noise. This system was comprised of a mobile unit and a server-based platform with nine highly accurate micro-sensors in-coupling into the mobile unit for estimating these environmental exposures. A calibration test using existing monitoring station data was conducted in order to evaluate the systematic errors. Two applications with the use of the new system were also conducted under different scenarios: pre- and post-typhoon days and in areas with higher and lower vegetation coverage. Linear regressions were applied to predict the changes in environmental quality after a typhoon and to estimate the difference in environmental exposures between urban roads and green spaces. The results show that environmental exposures interact with each other, while some exposures are also controlled by location. PM2.5 had the highest change after a typhoon with an estimated 8.0 μg/m³ decrease that was controlled by other environmental factors and geographical location. Sound level and temperature were significantly higher on urban roads than in urban parks. This study demonstrates the potential to use IIEMS for environmental quality measurements under the greater framework of a Smart City and for sustainability research.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3