Medium-Term Rainfall Forecasts Using Artificial Neural Networks with Monte-Carlo Cross-Validation and Aggregation for the Han River Basin, Korea

Author:

Lee JeongwooORCID,Kim Chul-GyumORCID,Lee Jeong Eun,Kim Nam Won,Kim HyeonjunORCID

Abstract

In this study, artificial neural network (ANN) models were constructed to predict the rainfall during May and June for the Han River basin, South Korea. This was achieved using the lagged global climate indices and historical rainfall data. Monte-Carlo cross-validation and aggregation (MCCVA) was applied to create an ensemble of forecasts. The input-output patterns were randomly divided into training, validation, and test datasets. This was done 100 times to achieve diverse data splitting. In each data splitting, ANN training was repeated 100 times using randomly assigned initial weight vectors of the network to construct 10,000 prediction ensembles and estimate their prediction uncertainty interval. The optimal ANN model that was used to forecast the monthly rainfall in May had 11 input variables of the lagged climate indices such as the Arctic Oscillation (AO), East Atlantic/Western Russia Pattern (EAWR), Polar/Eurasia Pattern (POL), Quasi-Biennial Oscillation (QBO), Sahel Precipitation Index (SPI), and Western Pacific Index (WP). The ensemble of the rainfall forecasts exhibited the values of the averaged root mean squared error (RMSE) of 27.4, 33.6, and 39.5 mm, and the averaged correlation coefficient (CC) of 0.809, 0.725, and 0.641 for the training, validation, and test sets, respectively. The estimated uncertainty band has covered 58.5% of observed rainfall data with an average band width of 50.0 mm, exhibiting acceptable results. The ANN forecasting model for June has 9 input variables, which differed from May, of the Atlantic Meridional Mode (AMM), East Pacific/North Pacific Oscillation (EPNP), North Atlantic Oscillation (NAO), Scandinavia Pattern (SCAND), Equatorial Eastern Pacific SLP (SLP_EEP), and POL. The averaged RMSE values are 39.5, 46.1, and 62.1 mm, and the averaged CC values are 0.853, 0.771, and 0.683 for the training, validation, and test sets, respectively. The estimated uncertainty band for June rainfall forecasts generally has a coverage of 67.9% with an average band width of 83.0 mm. It can be concluded that the neural network with MCCVA enables us to provide acceptable medium-term rainfall forecasts and define the prediction uncertainty interval.

Funder

Korea Institute of Construction Technology

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3