Abstract
There is increasing concern to determine an alternative coagulant for treating industrial effluent with minimal environmental impact and operational cost. In this study, iron (II) sulphate heptahydrate (FeSO4·7H2O) waste, an industrial byproduct from a titanium oxide processing industry, was used as a coagulant for the removal of ammonia (NH3), chemical oxygen demand (COD), biochemical oxygen demand (BOD), and suspended solid (SS) from secondary rubber processing effluent (SRPE). The highest percentage removal of BOD, COD, SS, and NH3 achieved was approximately 97%, 99%, 98%, and 95%, respectively, at pH 5.0, coagulant dose of 1 g/L, coagulation time of 60 min, sedimentation time of 60 min, and at an elevated temperature of 70 °C. The best described adsorption isotherm model was found to be the Brunauer–Emmett–Teller (BET) model, indicated that the FeSO4·7H2O adsorption took placed on the surface of iron hydroxide precipitates with multilayer formation and random distribution. The kinetics analysis showed that the adsorption mechanism was well fitted with the pseudo-second-order kinetic model. The findings of the present study show that the FeSO4·7H2O waste has the potential to be used as a coagulant for the treatment of industrial effluents, including the secondary rubber processing effluent.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献