Bioavailability of Methionine-Coated Zinc Nanoparticles as a Dietary Supplement Leads to Improved Performance and Bone Strength in Broiler Chicken Production

Author:

Alkhtib Ashraf,Scholey Dawn,Carter Nicholas,Cave Gareth W.V.ORCID,Hanafy Belal I.ORCID,Kempster Siani R.J.,Mekapothula Subbareddy,Roxborough Eve T.,Burton Emily J.

Abstract

Recently, nanotechnology has been widely adopted in many fields. The goal of this study was to evaluate the potential for amino acid coated nano minerals as a supplement in broiler feed. Zinc was selected as a model mineral for this test and supplementation of nano zinc, both coated and uncoated was compared with organic and inorganic commercial forms of zinc. A total of 48 pens (8 birds each) were assigned to one of the following dietary treatments: Control, methionine-Zinc chelate (M-Zn), nano zinc oxide (Nano-ZnO), and methionine coated nano zinc oxide (M-Nano-ZnO). All experimental diets were formulated with the same total zinc, methionine, protein, and energy content with just the zinc source as a variable. Bird weight, feed intake and feed conversion ratios were recorded weekly, with three birds culled (sacrificed) at day 21 and day 35 for sampling measures. Ileal digestibility of zinc was determined at day 21 and day 35 using titanium dioxide as an inert marker. Blood serum, liver and spleen samples were collected at day 21 and day 35 and analysed for zinc content via inductively coupled plasma mass spectrometry (ICP-MS). Tibia strength and morphometrics were measured from both legs of three birds per pen at day 21 and day 35. The study was conducted at Nottingham Trent University Poultry Unit, UK. The novel method of producing nano minerals coated with amino acids was successfully tested with zinc and material produced to test in the feeding study. Methionine coated nano zinc oxide supplementation significantly improved bird weight gain and the increased feed intake of broilers compared to an inorganic zinc form. Ileal digestibility was also improved with this methionine-nano zinc. Moreover, this supplementation improved the tibia strength of broilers at the age of 21 days, though this was not observed at day 35. Therefore, M-Nano-ZnO could be used to supplement broilers to improve both performance and digestibility with a limited positive impact on bone strength. The results of the current study suggest that the amino acid coating of nano minerals can improve the digestibility of minerals which may have further implications for the field of mineral nutrition in animal feeds.

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3