Abstract
As aquatic animals, fishes often encounter various situations of low oxygen, and they have evolved the ability to respond to hypoxia stress. Studies of physiological and molecular responses to hypoxia stress are essential to clarify genetic mechanisms underlying hypoxia tolerance in fish. In this study, we performed acute hypoxia treatment in juvenile bighead carp (Hypophthalmicthys nobilis) by decreasing water O2 from 6.5 mg/L to 0.5 mg/L in three hours. This hypoxia stress resulted in a significant increase in blood lactate and serum glucose. Comparisons of heart transcriptome among hypoxia tolerant (HT), hypoxia sensitive (HS), and normoxia control (NC) groups showed that 820, 273, and 301 differentially expressed genes (DEGs) were identified in HS vs. HT, NC vs. HS, and NC vs. HT (false discovery rate (FDR) < 0.01, Fold Change> 2), respectively. KEGG pathway enrichment showed that DEGs between HS and HT groups were mainly involved in mitogen-activated protein kinase (MAPK) signaling, insulin signaling, apoptosis, tight junction and adrenergic signaling in cardiomyocytes pathways, and DEGs in MAPK signaling pathway played a key role in cardiac tolerance to hypoxia. Combined with the results of our previous cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis of hypoxia stress in this species, such genes as stbp2, ttn, mapk, kcnh, and tnfrsf were identified in both studies, representing the significance of these DEGs in hypoxia tolerance in bighead carp. These results provide insights into the understanding of genetic modulations for fish heart coping with hypoxia stress and generate basic resources for future breeding studies of hypoxia resistance in bighead carp.
Funder
State Key Laboratory of Freshwater Ecology and Biotechnology
Subject
General Veterinary,Animal Science and Zoology
Reference55 articles.
1. Effects of hypoxia on rainbow trout (Oncorhynchus mykiss): Intraerythrocytic phosphates;Val;J. Exp. Biol.,1995
2. Molecular characterization and expression regulation of the factor-inhibiting HIF-1 (FIH-1) gene under hypoxic stress in bighead carp (Aristichthys nobilis)
3. Fish adaptation to oxygen variations in aquaculture from hypoxia to hyperoxia;Dong;J. Fish Aquat.,2011
4. Responses of Fish to Aquatic Hypoxia;Randall,2002
5. Chapter 10 Metabolic and molecular responses of fish to hypoxia;Richards;Fish Physiol.,2009
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献