Improved YOLOv7 Network Model for Gangue Selection Robot for Gangue and Foreign Matter Detection in Coal

Author:

Yang Dengjie12ORCID,Miao Changyun23,Li Xianguo23,Liu Yi124,Wang Yimin12,Zheng Yao23

Affiliation:

1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China

2. Tianjin Photoelectric Detection Technology and System Key Laboratory, Tiangong University, Tianjin 300387, China

3. School of Electronics and Information Engineering, Tiangong University, Tianjin 300387, China

4. Center for Engineering Internship and Training, Tiangong University, Tianjin 300387, China

Abstract

Coal production often involves a substantial presence of gangue and foreign matter, which not only impacts the thermal properties of coal and but also leads to damage to transportation equipment. Selection robots for gangue removal have garnered attention in research. However, existing methods suffer from limitations, including slow selection speed and low recognition accuracy. To address these issues, this study proposes an improved method for detecting gangue and foreign matter in coal, utilizing a gangue selection robot with an enhanced YOLOv7 network model. The proposed approach entails the collection of coal, gangue, and foreign matter images using an industrial camera, which are then utilized to create an image dataset. The method involves reducing the number of convolution layers of the backbone, adding a small size detection layer to the head to enhance the small target detection, introducing a contextual transformer networks (COTN) module, employing a distance intersection over union (DIoU) loss border regression loss function to calculate the overlap between predicted and real frames, and incorporating a dual path attention mechanism. These enhancements culminate in the development of a novel YOLOv71 + COTN network model. Subsequently, the YOLOv71 + COTN network model was trained and evaluated using the prepared dataset. Experimental results demonstrated the superior performance of the proposed method compared to the original YOLOv7 network model. Specifically, the method exhibits a 3.97% increase in precision, a 4.4% increase in recall, and a 4.5% increase in mAP0.5. Additionally, the method reduced GPU memory consumption during runtime, enabling fast and accurate detection of gangue and foreign matter.

Funder

National Natural Science Foundation of China

Key R&D Programme Science and Technology Support Projects of Tianjin

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3