Reciprocal Common Garden Altitudinal Transplants Reveal Potential Negative Impacts of Climate Change on Abies religiosa Populations in the Monarch Butterfly Biosphere Reserve Overwintering Sites

Author:

Cruzado-Vargas Ana,Blanco-García Arnulfo,Lindig-Cisneros Roberto,Gómez-Romero Mariela,Lopez-Toledo Leonel,de la Barrera ErickORCID,Sáenz-Romero CuauhtémocORCID

Abstract

Research Highlights: Reciprocal altitudinal transplants of Abies religiosa seedlings within the Monarch Butterfly Biosphere Reserve (MBBR) allow prediction of the impacts of climatic change, because they grow in sites with a climate that differs from that of their origin. Background and Objectives: Climatic change is generating a mismatch between the sites currently occupied by forest populations and the climate to which they have adapted. This study determined the effect on the survival and growth of A. religiosa seedlings of transfer to sites that were warmer or colder than that of the origin of their seeds. Materials and Methods: Eleven provenances of A. religiosa, collected along an altitudinal gradient (3000 to 3550 m a.s.l.), were assayed in common gardens in three sites of contrasting altitude: 3400, 3000 and 2600 m a.s.l. The results were evaluated by fitting a response curve with a mixed model. Results: The climate transfer distance for the seasonal balance between the temperature conducive to growth (degree days above 5 °C) and the available precipitation (a ratio expressed as dryness index) dominated the shape of the response function curve. The rainy season (June–October) dryness index transfer distance was critical for survival, while that of the cold and dry season (November–February) was critical for aerial biomass, and the annual index was critical for the increase in basal diameter. The effect of climatic transfer distance is much more negative (triggering about 45% mortality) when transfer is toward warmer and dryer sites (at 400 m lower in altitude, +1.9 °C warmer and 16% less precipitation), than when shifting toward colder and wetter sites (400 m higher in altitude, resulting in 95% survival). Conclusions: The projected higher temperatures and lower precipitation due to climatic change will undoubtedly cause severe mortality in young A. religiosa seedlings. A 400 m shift upwards in altitude to compensate for climatic change (assisted migration) appears to be a feasible management action.

Funder

Consejo Nacional de Ciencia y Tecnología

Monarch Butterfly Fund

United States Agency for International Development

Universidad Nacional Autónoma de México

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3