Abstract
Research Highlights: Reciprocal altitudinal transplants of Abies religiosa seedlings within the Monarch Butterfly Biosphere Reserve (MBBR) allow prediction of the impacts of climatic change, because they grow in sites with a climate that differs from that of their origin. Background and Objectives: Climatic change is generating a mismatch between the sites currently occupied by forest populations and the climate to which they have adapted. This study determined the effect on the survival and growth of A. religiosa seedlings of transfer to sites that were warmer or colder than that of the origin of their seeds. Materials and Methods: Eleven provenances of A. religiosa, collected along an altitudinal gradient (3000 to 3550 m a.s.l.), were assayed in common gardens in three sites of contrasting altitude: 3400, 3000 and 2600 m a.s.l. The results were evaluated by fitting a response curve with a mixed model. Results: The climate transfer distance for the seasonal balance between the temperature conducive to growth (degree days above 5 °C) and the available precipitation (a ratio expressed as dryness index) dominated the shape of the response function curve. The rainy season (June–October) dryness index transfer distance was critical for survival, while that of the cold and dry season (November–February) was critical for aerial biomass, and the annual index was critical for the increase in basal diameter. The effect of climatic transfer distance is much more negative (triggering about 45% mortality) when transfer is toward warmer and dryer sites (at 400 m lower in altitude, +1.9 °C warmer and 16% less precipitation), than when shifting toward colder and wetter sites (400 m higher in altitude, resulting in 95% survival). Conclusions: The projected higher temperatures and lower precipitation due to climatic change will undoubtedly cause severe mortality in young A. religiosa seedlings. A 400 m shift upwards in altitude to compensate for climatic change (assisted migration) appears to be a feasible management action.
Funder
Consejo Nacional de Ciencia y Tecnología
Monarch Butterfly Fund
United States Agency for International Development
Universidad Nacional Autónoma de México
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献