Steel Strip Defect Sample Generation Method Based on Fusible Feature GAN Model under Few Samples

Author:

Yi Cancan123ORCID,Chen Qirui123,Xu Biao123,Huang Tao123

Affiliation:

1. Key Laboratory of Metallurgical Equipment and Control Technology (Wuhan University of Science and Technology), Ministry of Education, Wuhan 430081, China

2. Hubei Key Laboratory of Mechanical Transmission and Manufacturing Engineering (Wuhan University of Science and Technology), Wuhan 430081, China

3. Precision Manufacturing Institute (Wuhan University of Science and Technology), Wuhan 430081, China

Abstract

Due to the shortage of defect samples and the high cost of labelling during the process of hot-rolled strip production in the metallurgical industry, it is difficult to obtain a large quantity of defect data with diversity, which seriously affects the identification accuracy of different types of defects on the steel surface. To address the problem of insufficient defect sample data in the task of strip steel defect identification and classification, this paper proposes the Strip Steel Surface Defect-ConSinGAN (SDE-ConSinGAN) model for strip steel defect identification which is based on a single-image model trained by the generative adversarial network (GAN) and which builds a framework of image-feature cutting and splicing. The model aims to reduce training time by dynamically adjusting the number of iterations for different training stages. The detailed defect features of training samples are highlighted by introducing a new size-adjustment function and increasing the channel attention mechanism. In addition, real image features will be cut and synthesized to obtain new images with multiple defect features for training. The emergence of new images is able to richen generated samples. Eventually, the generated simulated samples can be directly used in deep-learning-based automatic classification of surface defects in cold-rolled thin strips. The experimental results show that, when SDE-ConSinGAN is used to enrich the image dataset, the generated defect images have higher quality and more diversity than the current methods do.

Funder

Hubei Province Key Research and Development Plan

Guangxi Key Research and Development Plan

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3