Conversion of a Direct to an Indirect Refrigeration System at Medium Temperature Using R-134a and R-507A: An Energy Impact Analysis

Author:

Llopis RodrigoORCID,Sánchez DanielORCID,Cabello RamónORCID,Catalán-Gil JesúsORCID,Nebot-Andrés LauraORCID

Abstract

This work presents the experimental evaluation of energy consumption and refrigerant charge reduction when a commercial direct expansion refrigeration system is converted into an indirect system. The evaluation (with R-134a and R-507A) used a commercial cabinet with doors for medium temperature and a single-stage refrigeration cycle using a semi-hermetic compressor and electronic expansion valve; 24-h energy consumption tests were performed at laboratory conditions for each refrigerant and configuration at three heat rejection levels (23.3, 32.8 and 43.6 °C), maintaining an average product temperature inside the cabinet of 2 °C. The work analyses the impact of the conversion on temperature and pressure indicators, as well as, in the energy performance of each element. For R-134a the refrigerant charge was reduced in a 42.9%, but the energy consumption rose by 22.0%–22.8%; for R-507A the charge reduction was of 32.8% with an increase in energy consumption of between 27.7% and 38.7%.

Funder

Ministerio de Economía y Competitividad – Spain

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference26 articles.

1. Report of the Twenty-Eighth Meeting of the Parties to the Montreal Protocol on Substances That Deplete the Ozone Layer,2016

2. Regulation (EU) No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006,2014

3. Energy analysis of alternative CO 2 refrigeration system configurations for retail food applications in moderate and warm climates

4. Control optimizations for heat recovery from CO2 refrigeration systems in supermarket

5. Refrigerants for vapor compression refrigeration systems;Llopis,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3