Protecting a Pumping Pipeline System from Low Pressure Transients by Using Air Pockets: A Case Study

Author:

Carmona-Paredes Rafael BernardoORCID,Pozos-Estrada Oscar,Carmona-Paredes Libia Georgina,Sánchez-Huerta Alejandro,Rodal-Canales Eduardo Antonio,Carmona-Paredes Germán Jorge

Abstract

This paper presents a case study of an existing water pipeline with five pumping stations each equipped with five pumps. In order to study the pipeline behavior prior to putting the system into operation, several transient simulations for different scenarios were developed. Results revealed that the most serious situation occurred when a simultaneous failure of the five pumps occur at each station caused by power cut, producing negative pressure waves because the system for control of hydraulic transients of the pipeline was insufficient to suppress downsurge pressures, due to the moment of inertia of all the pumps being erroneously considered during the design stage. The necessity to start supplying water to the population led to attempt an unconventional form of protecting the line against low pressures. The solution was to operate two of the five pumps per plant, and permit air to enter through combination air valves located along the pipeline. Air entrained formed pockets that remained stationary at the air valves locations, acting as air cushions that absorbed the energy of transient pressure waves. Computational simulations were conducted considering that two pumps are in operation at each plant and suddenly these fail simultaneously caused by power failure. The program was verified by comparing the calculated results with those registered during field pressure measurements. It was noticed that the surge modelling results are in good agreement with the measured data; furthermore, these show the air pockets in combination with existing devices for transient control protect the system adequately, avoiding potential damage to the pipeline.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Negative pressure protection of water supply systems with multi-undulating terrain by one-way surge tanks;AQUA — Water Infrastructure, Ecosystems and Society;2023-10-28

2. Energy Efficient Control by the Group of Oil Pumping Stations Operation;Problems of the Regional Energetics;2021-11

3. Elevated tanks effect on transient pressures: case study;Journal of Water, Sanitation and Hygiene for Development;2021-06-14

4. Simulation of Pressure Transients Due to Valve Chattering in a Heat Transport Circuit of a Process Plant;Process Integration and Optimization for Sustainability;2020-04-08

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3