Molecular Mechanisms of Oxygen Evolution Reactions for Artificial Photosynthesis

Author:

Nosaka Yoshio1ORCID

Affiliation:

1. Department of Materials Science and Technology, Nagaoka University of Technology, Nagaoka 940-2188, Japan

Abstract

Addressing the global environmental problem of water splitting to produce hydrogen fuel by solar energy is receiving so much attention. In water splitting, the essential problem to solve is the development of efficient catalysts for oxygen production. In this paper, having the prospect for a practical application of photocatalysts to artificial photosynthesis, molecular mechanisms in the current literature are briefly reviewed. At first, recent progress in the function of the Mn cluster at the natural photosystem II is briefly described. The kinds of devices in which oxygen evolution reaction (OER) catalysts are used were designated: water electrolyzers, photoelectrodes, and photocatalysts. Some methods for analyzing molecular mechanisms in OER catalysis, emphasized by the FTIR method, are shown briefly. After describing common OER mechanisms, the molecular mechanisms are discussed for TiO2 and BiVO4 photoelectrodes with our novel data, followed by presenting OER co-catalysts of IrO2, RuO2, NiO2, and other metal oxides. Recent reports describing OER catalysts of perovskites, layered double hydroxides (LDH), metal–organic frameworks (MOF), single-atom catalysts, as well as metal complexes are reviewed. Finally, by comparing with natural photosystem, the required factors to improve the activity of the catalysts for artificial photosynthesis will be discussed.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences,General Engineering,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3