Affiliation:
1. Sports Performance Laboratory, School of Physical Education and Sport Science, National and Kapodistrian University of Athens, 17237 Athens, Greece
2. A’ Neurology Department, Aiginition Hospital, School of Health Sciences, National and Kapodistrian University of Athens, 11528 Athens, Greece
Abstract
Ultrasonography has been extensively used to evaluate skeletal muscle morphology. The echo intensity, i.e., the mean pixel intensity of a specific region of interest in an ultrasound image, may vary among muscles and individuals with several intramuscular parameters presumed to influence it. The purpose of this study was to investigate the correlation between muscle echo intensity and muscle fiber type composition in humans. Thirteen female physical education students (age: 22.3 ± 5.4 years, height: 1.63 ± 0.06 m, body mass: 59.9 ± 7.4 kg) with no history of systematic athletic training participated in the study. Body composition with dual X-ray absorptiometry, leg-press maximum strength (1-RM), echo intensity, and the cross-sectional area (CSA) of the vastus lateralis (VL) muscle according to ultrasonography were measured. Muscle biopsies were harvested from the VL site where the echo intensity was measured. VL echo intensity was not significantly correlated with the percentage of type I muscle fibers or with the percentage area of type I muscle fibers. However, when VL echo intensity was corrected for the subcutaneous fat thickness at the site of the measurement, it was significantly correlated with the percentage of type I muscle fibers (r = 0.801, p < 0.01) and the percentage area of type I muscle fibers (r = 0.852, p < 0.01). These results suggest that the echo intensity of the vastus lateralis muscle corrected for the subcutaneous fat thickness at the measurement site may provide an estimate of the muscle fiber type composition, at least in young moderately trained females.