Spatiotemporal Dynamics of Forest Vegetation and Their Impacts on Soil Properties in the Forest-Steppe Zone of Central Russian Upland: A Remote Sensing, GIS Analysis, and Field Studies Approach

Author:

Chendev Yury G.1ORCID,Lupo Anthony R.2ORCID,Terekhin Edgar A.1,Smirnova Maria A.3ORCID,Gennadiev Aleksandr N.3,Narozhnyaya Anastasia G.1ORCID,Lebedeva Maria G.1,Belevantsev Valery G.1

Affiliation:

1. Department of Nature Management and Land Cadaster, Institute of Earth Sciences, Belgorod State University, Pobeda Street 85, 308015 Belgorod, Russia

2. Missouri Climate Center, Department of Soil, Environmental, and Atmospheric Sciences, University of Missouri, 302 Anheuser-Busch Natural Resources Building, Columbia, MO 65211, USA

3. Department of Landscape Geochemistry and Soil Geography, Faculty of Geography, Lomonosov Moscow State University, Leninskie Gory 1, 119330 Moscow, Russia

Abstract

This article showcases the outcomes of a comprehensive spatiotemporal dynamic analysis conducted in forest vegetation areas within the forest-steppe zone of the Central Russian Upland (eastern Europe), spanning the period from 1970 to 2020. This study utilized high-resolution data from the Corona satellite system from the year 1970 as well as satellite imagery from the ArcGIS World Imagery database. Soil properties and their changes were assessed based on the analysis of soil bulk density (930 samples), soil organic carbon features, pH, available phosphorus, and the composition of salt extracts (1362 samples). We collected and analyzed 3920 soil samples in the field to study the impact of shelterbelts on soil moisture over a period of two years. For six selected key sites with a total area of 1722 km2, it was found that over a 50-year period, the area covered by forest vegetation increased from 14% to 24%. This expansion was primarily due to the planting and growth of young shelterbelts in the 1970s–1980s as well as widening anti-erosion shelterbelts on slopes and gullies. The average linear growth rate of forest vegetation boundaries was found to be 23.5 m (4.7 m per decade) for the entire study area. The expansion was highest on west-facing slopes, which was attributed to the higher moisture content from windward atmospheric precipitation events. However, alongside the increase in forest cover, degradation was also observed, particularly in old-age shelterbelts, which was attributed to increased fragmentation and mortality. A gradual increase in the extent of shelterbelt degradation was observed from the northwest to the southeast within the forest-steppe region, corresponding to areas with a drier climate. Additionally, the impact of shelterbelts on soil properties and soil cover was analyzed using four key sites and using fields and laboratory research methods. We detected a lateral uptake of substances from plowed soils into the soils of shelterbelts and vertical uptake from deep layers. The two-year observations (2020 and 2021) of soil moisture during the growing season (May–September) in two climatically contrasting forest-steppe areas revealed a more intensive accumulation of soil moisture in fields west of shelterbelts compared to those to the east of them, particularly within the 10 m zone near the shelterbelts. This can be attributed to arable fields on the windward side receiving more moisture compared to the leeward side. The formation of striped microstructures in the soil cover that occurred under the shelterbelts and on adjacent arable lands was influenced by various factors such as microclimatic conditions, vegetation types, ecological conditions for soil fauna, and human-induced soil processing and transformation along the shelterbelt boundaries. Shelterbelts and their adjacent areas in agro-landscapes are considered to be self-developing natural–anthropogenic geosystems with their own organizational structure. Therefore, their study is recommended as an integral part of modern geographical zoning.

Funder

Russian Science Foundation

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3