On the Determination of Elastic Properties of Single-Walled Nitride Nanotubes Using Numerical Simulation

Author:

Sakharova Nataliya A.1ORCID,Pereira André F. G.1ORCID,Antunes Jorge M.12ORCID,Chaparro Bruno M.2,Parreira Tomás G.1ORCID,Fernandes José V.1ORCID

Affiliation:

1. Centre for Mechanical Engineering, Materials and Processes (CEMMPRE)—Advanced Production and Intelligent Systems, Associated Laboratory (ARISE), Department of Mechanical Engineering, University of Coimbra, Rua Luís Reis Santos, Pinhal de Marrocos, 3030-788 Coimbra, Portugal

2. Abrantes High School of Technology, Polytechnic Institute of Tomar, Quinta do Contador, Estrada da Serra, 2300-313 Tomar, Portugal

Abstract

In recent years, tubular nanostructures have been related to immense advances in various fields of science and technology. Considerable research efforts have been centred on the theoretical prediction and manufacturing of non-carbon nanotubes (NTs), which meet modern requirements for the development of novel devices and systems. In this context, diatomic inorganic nanotubes formed by atoms of elements from the 13th group of the periodic table (B, Al, Ga, In, Tl) and nitrogen (N) have received much research attention. In this study, the elastic properties of single-walled boron nitride, aluminium nitride, gallium nitride, indium nitride, and thallium nitride nanotubes were assessed numerically using the nanoscale continuum modelling approach (also called molecular structural mechanics). The elastic properties (rigidities, surface Young’s and shear moduli, and Poisson’s ratio) of nitride nanotubes are discussed with respect to the bond length of the corresponding diatomic hexagonal lattice. The results obtained contribute to a better understanding of the mechanical response of nitride compound-based nanotubes, covering a broad range, from the well-studied boron nitride NTs to the hypothetical thallium nitride NTs.

Funder

FEDER funds through the program COMPETE—Programa Operacional Factores de Competitividade

FCT

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3