Experimental Study on the Microfabrication and Mechanical Properties of Freeze–Thaw Fractured Sandstone under Cyclic Loading and Unloading Effects

Author:

Liu Taoying12,Cai Wenbin1,Sheng Yeshan1,Huang Jun12

Affiliation:

1. School of Resource and Safety Engineering, Central South University, Changsha 410083, China

2. Guangxi Liubin Expressway Construction and Development Co., Ltd., Nanning 530023, China

Abstract

A series of freeze–thaw cycling tests, as well as cyclic loading and unloading tests, have been conducted on nodular sandstones to investigate the effect of fatigue loading and freeze–thaw cycling on the damage evolution of fractured sandstones based on damage mechanics theory, the microstructure and sandstone pore fractal theory. The results show that the number of freeze–thaw cycles, the cyclic loading level, the pore distribution and the complex program are important factors affecting the damage evolution of rocks. As the number of freeze–thaw cycles rises, the peak strength, modulus of elasticity, modulus of deformation and damping ratio of the sandstone all declined. Additionally, the modulus of elasticity and deformation increase nonlinearly as the cyclic load level rises. With the rate of increase decreasing, while the dissipation energy due to hysteresis increases gradually and at an increasing rate, and the damping ratio as a whole shows a gradual decrease, with a tendency to increase at a later stage. The NRM (Nuclear Magnetic Resonance) demonstrated that the total porosity and micro-pores of the sandstone increased linearly with the number of freeze–thaw cycles and that the micro-porosity was more sensitive to freeze–thaw, gradually shifting towards meso-pores and macro-pores; simultaneously, the SEM (Scanning Electron Microscope) indicated that the more freeze–thaw cycles there are, the more micro-fractures and holes grow and penetrate each other and the more loose the structure is, with an overall nest-like appearance. To explore the mechanical behavior and mechanism of cracked rock in high-altitude and alpine areas, a damage model under the coupling of freeze–thaw-fatigue loading was established based on the loading and unloading response ratio theory and strain equivalence principle.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3