Prediction of Aggregate Packing with Tubular Macrocapsules in the Inert Structure of Self-Healing Concrete Based on Dewar’s Particle Packing Model

Author:

Hermawan Harry12ORCID,Simons Alicia1,Teirlynck Silke1,Anglani Giovanni3ORCID,Serna Pedro2ORCID,Tulliani Jean-Marc4ORCID,Antonaci Paola3ORCID,Minne Peter1,Gruyaert Elke1ORCID

Affiliation:

1. Department of Civil Engineering, Materials and Constructions, Ghent Campus, KU Leuven, Gebroeders De Smetstraat 1, 9000 Ghent, Belgium

2. Instituto de Ciencia y Tecnología Del Hormigón (ICITECH), Universitat Politècnica de València, Camino de Vera S/n, 46022 Valencia, Spain

3. Department of Structural, Geotechnical and Building Engineering (DISEG), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

4. INSTM Research Unit PoliTO-LINCE Laboratory, Department of Applied Science and Technology (DISAT), Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

Abstract

This paper brings a new insight into understanding the influence of macrocapsules in packing systems, which can be useful in designing the inert structure of self-healing concrete. A variety of tubular macrocapsules, in terms of types and sizes, was used to assess the capsules’ effect in the packing, together with various aggregate types and fractions. The voids ratios (U) of aggregate mixtures were evaluated experimentally and compared with the prediction via the particle packing model of Dewar. The packing of coarse particles was found to be considerably affected by the presence of macrocapsules, while no capsules’ effect on the packing of fine particles was attained. A higher capsule dosage and capsule aspect ratio led to a higher voids ratio. In the formulation of the inert structure, the packing disturbance due to capsules can be minimised by increasing the content of fine aggregates over coarse aggregates. Dewar’s model showed a good compatibility with experimental results in the absence of capsules. However, the model needed to be upgraded for the introduction of tubular macrocapsules. Accordingly, the effect of macrocapsules was extensively analysed and a ‘U model’ for capsules (with some limitations) was finally proposed, offering a high predicting accuracy.

Funder

European Union’s Horizon 2020 research and innovation programme

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3