Influence of Solute Drag Effect and Interphase Precipitation of Nb on Ferrite Transformation

Author:

Cai Yiming1ORCID,Wei Ran12,Jin Duoduo1,Wang Honghong3,Wan Xiangliang1,Hu Chengyang1ORCID,Wu Kaiming12

Affiliation:

1. Collaborative Innovation Center for Advanced Steels, Wuhan University of Science and Technology, Wuhan 430081, China

2. Department of Applied Physics, Wuhan University of Science and Technology, Wuhan 430081, China

3. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China

Abstract

The significant impact of Nb on ferrite transformation, both in terms of solute drag effect (SDE) and interphase precipitation, was investigated quantitatively. Ferrite transformation kinetics were characterized using thermal expansion experiments and theoretical calculations. The microstructures were characterized using high−temperature confocal laser scanning microscopy (CLSM), a field−emission scanning electron microscope (FESEM), and a transmission electron microscope (TEM). Under a higher driving force, interphase precipitations were observed in the sample with a higher Nb content. A three−dimensional (3D) reconstruction method was used to convert the two−dimensional (2D) image of interphase precipitation into a three−dimensional model for a more typical view. The SDE and interphase precipitation had opposite effects on the kinetics of ferrite transformation. A lower Nb content showed a strong contribution to the SDE, which delayed ferrite transformation. A higher concentration of Nb was expected to enhance the SDE, but the inhibition effect was eliminated by the interphase precipitation of NbC during interfacial migration. Both the experimental results and theoretical calculations confirmed this phenomenon.

Funder

the National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3