Iterative Models for Early Detection of Invasive Species across Spread Pathways

Author:

Cook Gericke,Jarnevich CatherineORCID,Warden Melissa,Downing Marla,Withrow John,Leinwand Ian

Abstract

Species distribution models can be used to direct early detection of invasive species, if they include proxies for invasion pathways. Due to the dynamic nature of invasion, these models violate assumptions of stationarity across space and time. To compensate for issues of stationarity, we iteratively update regionalized species distribution models annually for European gypsy moth (Lymantria dispar dispar) to target early detection surveys for the USDA APHIS gypsy moth program. We defined regions based on the distances from the invasion spread front where shifts in variable importance occurred and included models for the non-quarantine portion of the state of Maine, a short-range region, an intermediate region, and a long-range region. We considered variables that represented potential gypsy moth movement pathways within each region, including transportation networks, recreational activities, urban characteristics, and household movement data originating from gypsy moth infested areas (U.S. Postal Service address forwarding data). We updated the models annually, linked the models to an early detection survey design, and validated the models for the following year using predicted risk at new positive detection locations. Human-assisted pathways data, such as address forwarding, became increasingly important predictors of gypsy moth detection in the intermediate-range geographic model as more predictor data accumulated over time (relative importance = 5.9%, 17.36%, and 35.76% for 2015, 2016, and 2018, respectively). Receiver operating curves showed increasing performance for iterative annual models (area under the curve (AUC) = 0.63, 0.76, and 0.84 for 2014, 2015, and 2016 models, respectively), and boxplots of predicted risk each year showed increasing accuracy and precision of following year positive detection locations. The inclusion of human-assisted pathway predictors combined with the strategy of iterative modeling brings significant advantages to targeting early detection of invasive species. We present the first published example of iterative species distribution modeling for invasive species in an operational context.

Publisher

MDPI AG

Subject

Forestry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3