Epidemiological Correlation of Pulmonary Aspergillus Infections with Ambient Pollutions and Influenza A (H1N1) in Southern Taiwan

Author:

Liu Jien-Wei,Ku Yee-Huang,Chao Chien-Ming,Ou Hsuan-Fu,Ho Chung-HanORCID,Chan Khee-Siang,Yu Wen-LiangORCID

Abstract

An increase in fungal spores in ambient air is reported during a spike in particulate matter (PM2.5 and PM10) aerosols generated during dust or smog events. However, little is known about the impact of ambient bioaerosols on fungal infections in humans. To identify the correlation between the incidence of pulmonary aspergillosis and PM-associated bioaerosols (PM2.5 and PM10), we retrospectively analyzed data between 2015 and 2018 (first stage) and prospectively analyzed data in 2019 (second stage). Patient data were collected from patients in three medical institutions in Tainan, a city with a population of 1.88 million, located in southern Taiwan. PM data were obtained from the Taiwan Air Quality Monitoring Network. Overall, 544 non-repeated aspergillosis patients (first stage, n = 340; second stage, n = 204) were identified and enrolled for analysis. The trend of aspergillosis significantly increased from 2015 to 2019. Influenza A (H1N1) and ambient PMs (PM2.5 and PM10) levels had significant effects on aspergillosis from 2015 to 2018. However, ambient PMs and influenza A (H1N1) in Tainan were correlated with the occurrence of aspergillosis in 2018 and 2019, respectively. Overall (2015–2019), aspergillosis was significantly correlated with influenza (p = 0.002), influenza A (H1N1) (p < 0.001), and PM2.5 (p = 0.040) in Tainan City. Using a stepwise regression model, influenza A (H1N1) (p < 0.0001) and Tainan PM10 (p = 0.016) could significantly predict the occurrence of aspergillosis in Tainan. PM-related bioaerosols and influenza A (H1N1) contribute to the incidence of pulmonary aspergillosis.

Funder

Merck

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3