Abstract
A polarization-modulation-based Goos–Hanchen (GH) sensing scheme leveraging the polarization-dependence of the Bloch surface wave enhanced GH shift is proposed and experimentally demonstrated. Based on a simple setup utilizing a liquid crystal modulator to switch the polarization state of the input beam periodically, the alternating positions of the reflected beam for both polarizations are monitored by a lock-in amplifier to handily retrieve the GH shift signal. The conventional direct measurement of the beam position for the target state of polarization is vulnerable to instabilities in the optomechanical setup and alignment. Our proposed scheme provides a sensitive yet robust GH shift-sensing setup where the common mode drift and noise could be suppressed to ensure better system stability.
Funder
National Natural Science Foundation of China
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献