Improving the Estimation of Canopy Fluorescence Escape Probability in the Near-Infrared Band by Accounting for Soil Reflectance

Author:

Qi Mengjia123ORCID,Liu Xinjie12ORCID,Du Shanshan12,Guan Linlin12,Chen Ruonan123,Liu Liangyun123ORCID

Affiliation:

1. Key Laboratory of Digital Earth Science, Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China

2. International Research Center of Big Data for Sustainable Development Goals, Beijing 100094, China

3. College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China

Abstract

Solar-induced chlorophyll fluorescence (SIF) has been found to be a useful indicator of vegetation’s gross primary productivity (GPP). However, the directional SIF observations obtained from a canopy only represent a portion of the total fluorescence emitted by all the leaf photosystems because of scattering and reabsorption effects inside the leaves and canopy. Hence, it is crucial to downscale the SIF from canopy level to leaf level by modeling fluorescence escape probability (fesc) for improved comprehension of the relationship between SIF and GPP. Most methods for estimating fesc rely on the assumption of a “black soil background,” ignoring soil reflectance and the effect of scattering between soils and leaves, which creates significant uncertainties for sparse canopies. In this study, we added a correction factor considering soil reflectance, which was modeled using the Gaussian process regression algorithm, to the semi-empirical NIRv/FAPAR model and obtained the improved fesc model accounting for soil reflectance (called the fesc_GPR-SR model), which is suitable for near-infrared SIF downscaling. The evaluation results using two simulation datasets from the Soil–Canopy–Observation of Photosynthesis and the Energy Balance (SCOPE) model and the Discrete Anisotropic Radiative Transfer (DART) model showed that the fesc_GPR-SR model outperformed the NIRv/FAPAR model, especially for sparse vegetation, with higher accuracy for estimating fesc (R2 = 0.954 and RMSE = 0.012 for SCOPE simulations; R2 = 0.982 and RMSE = 0.026 for DART simulations) compared with the NIRv/FAPAR model (R2 = 0.866 and RMSE = 0.100 for SCOPE simulations; R2 = 0.984 and RMSE = 0.070 for DART simulations). The evaluation results using in situ observation data from multi-species canopies also suggested that the leaf-level SIF calculated by the fesc_GPR-SR model tracked better with photosynthetic active radiation absorbed by green components (APARgreen) for sparse vegetation (R2 = 0.937, RMSE = 0.656 mW/m2/nm) compared with the NIRv/FAPAR model (R2 = 0.921, RMSE = 0.904 mW/m2/nm). The leaf-level SIF calculated by the fesc_GPR-SR model was less sensitive to observation angles and differences in canopy structure among multiple species. These results emphasize the significance of accounting for soil reflectance in the estimation of fesc and demonstrate that the fesc_GPR-SR model can contribute to further exploring the physiological mechanism between SIF and GPP.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3