Real-Time Segmentation of Artificial Targets Using a Dual-Modal Efficient Attention Fusion Network

Author:

Shen Ying1ORCID,Liu Xiancai1,Zhang Shuo1,Xu Yixuan1,Zeng Dawei1,Wang Shu1ORCID,Huang Feng1

Affiliation:

1. School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China

Abstract

The fusion of spectral–polarimetric information can improve the autonomous reconnaissance capability of unmanned aerial vehicles (UAVs) in detecting artificial targets. However, the current spectral and polarization imaging systems typically suffer from low image sampling resolution, which can lead to the loss of target information. Most existing segmentation algorithms neglect the similarities and differences between multimodal features, resulting in reduced accuracy and robustness of the algorithms. To address these challenges, a real-time spectral–polarimetric segmentation algorithm for artificial targets based on an efficient attention fusion network, called ESPFNet (efficient spectral–polarimetric fusion network) is proposed. The network employs a coordination attention bimodal fusion (CABF) module and a complex atrous spatial pyramid pooling (CASPP) module to fuse and enhance low-level and high-level features at different scales from the spectral feature images and the polarization encoded images, effectively achieving the segmentation of artificial targets. Additionally, the introduction of the residual dense block (RDB) module refines feature extraction, further enhancing the network’s ability to classify pixels. In order to test the algorithm’s performance, a spectral–polarimetric image dataset of artificial targets, named SPIAO (spectral–polarimetric image of artificial objects) is constructed, which contains various camouflaged nets and camouflaged plates with different properties. The experimental results on the SPIAO dataset demonstrate that the proposed method accurately detects the artificial targets, achieving a mean intersection-over-union (MIoU) of 80.4%, a mean pixel accuracy (MPA) of 88.1%, and a detection rate of 27.5 frames per second, meeting the real-time requirement. The research has the potential to provide a new multimodal detection technique for enabling autonomous reconnaissance by UAVs in complex scenes.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Education and Scientific Research Foundation for Young Teachers in Fujian Province

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3