A Multipath and Multiscale Siamese Network Based on Spatial-Spectral Features for Few-Shot Hyperspectral Image Classification

Author:

Yang Jinghui1ORCID,Qin Jia1,Qian Jinxi2,Li Anqi1,Wang Liguo3

Affiliation:

1. School of Information Engineering, China University of Geosciences (Beijing), Beijing 100083, China

2. Institute of Telecommunication and Navigation Satellites, China Academy of Space Technology, Beijing 100094, China

3. College of Information and Communication Engineering, Dalian Minzu University, Dalian 116600, China

Abstract

Deep learning has been demonstrated to be a powerful nonlinear modeling method with end-to-end optimization capabilities for hyperspectral Images (HSIs). However, in real classification cases, obtaining labeled samples is often time-consuming and labor-intensive, resulting in few-shot training samples. Based on this issue, a multipath and multiscale Siamese network based on spatial-spectral features for few-shot hyperspectral image classification (MMSN) is proposed. To conduct classification with few-shot training samples, a Siamese network framework with low dependence on sample information is adopted. In one subnetwork, a spatial attention module (DCAM), which combines dilated convolution and cosine similarity to comprehensively consider spatial-spectral weights, is designed first. Then, we propose a residual-dense hybrid module (RDHM), which merges three-path features, including grouped convolution-based local residual features, global residual features and global dense features. The RDHM can effectively propagate and utilize different layers of features and enhance the expression ability of these features. Finally, we construct a multikernel depth feature extraction module (MDFE) that performs multiscale convolutions with multikernel and hierarchical skip connections on the feature scales to improve the ability of the network to capture details. Extensive experimental evidence shows that the proposed MMSN method exhibits a superior performance on few-shot training samples, and its classification results are better than those of other state-of-the-art classification methods.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3