Evaluating Water Balance Variables under Land Use and Climate Projections in the Upper Choctawhatchee River Watershed, in Southeast US

Author:

Makhtoumi YasharORCID,Li SimengORCID,Ibeanusi Victor,Chen GangORCID

Abstract

Changes in water balance variables are essential in planning and management. Two major factors affecting these variables are climate change and land use change. Few researches have been done to investigate the combined effect of the land use change and climate change using projections. In this study the hydrological processes in Upper Choctawhatchee River Watershed were modeled using the Soil and Water Assessment Tool (SWAT) to investigate the impacts of climate and land use change. We integrated land use projection based in the Shared Socioeconomic Pathways with future climate data to study the combined effects on Hydrological response of the watershed. Future rainfall and temperature, for two time periods, were obtained using General Climate Models to provide SWAT with the climatic forcing in order to project water balance variables. The simulation was carried out under two radiative forcing pathways of RCP4.5 and RCP6.0. Land use change focused on urbanization dominated the climate changes. Impacts on water balance variables differed seasonally. Results showed surface runoff experienced major changes under both emissions scenarios in some months up to 5 times increase. Among the water balance variables, evapotranspiration (ET) as the least dominant pathway for water loss showed the modest changes with the largest decrease during fall and summer. Projection indicated more frequent extreme behavior regarding water balance during midcentury. Discharge was estimated to increase through the year and the highest changes were projected during summer and fall with 186.3% increase in November under RCP6.0. Relying on rainfall for farming along with reduced agricultural landuse (11.8%) and increased urban area (47%) and population growth would likely make the water use efficiency critical. The model demonstrated satisfactory performance, capturing the hydrologic parameters. It thus can be used for further modelling of water quality to determine the sustainable conservation practices and extreme weather events such as hurricane and tropical storms.

Funder

U.S. Department of Agriculture

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3