Application of Multiscale Sample Entropy in Assessing Effects of Exercise Training on Skin Blood Flow Oscillations in People with Spinal Cord Injury

Author:

Liao Fuyuan1,Zhao Hengyang2,Lin Cheng-Feng3,Chen Panpan3ORCID,Chen Philbert4,Onyemere Kingsley4,Jan Yih-Kuen3ORCID

Affiliation:

1. Department of Biomedical Engineering, Xi’an Technological University, Xi’an 710021, China

2. School of Electronic Information Engineering, Xi’an Technological University, Xi’an 710021, China

3. Rehabilitation Engineering Lab, Department of Kinesiology and Community Health, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA

4. Carle Foundation Hospital, Urbana, IL 61801, USA

Abstract

Spinal cord injury (SCI) causes a disruption of autonomic nervous regulation to the cardiovascular system, leading to various cardiovascular and microvascular diseases. Exercise training is an effective intervention for reducing risk for microvascular diseases in healthy people. However, the effectiveness of exercise training on improving microvascular function in people with SCI is largely unknown. The purpose of this study was to compare blood flow oscillations in people with spinal cord injury and different physical activity levels to determine if such a lifestyle might influence skin blood flow. A total of 37 participants were recruited for this study, including 12 athletes with SCI (ASCI), 9 participants with SCI and a sedentary lifestyle (SSCI), and 16 healthy able-bodied controls (AB). Sacral skin blood flow (SBF) in response to local heating at 42 °C for 50 min was measured using laser Doppler flowmetry. The degree of the regularity of blood flow oscillations (BFOs) was quantified using a multiscale entropy approach. The results showed that BFO was significantly more irregular in ASCI and AB compared to SSCI during the maximal vasodilation period. Our results also demonstrate that the difference in the regularity of BFOs between original SBF signal and phase-randomized surrogate time series was larger in ASCI and AB compared to SSCI. Our findings indicate that SCI causes a loss of complexity of BFOs and exercise training may improve complexity in people with SCI. This study demonstrates that multiscale entropy is a sensitive method for detecting differences between different categories of people with SCI and might be able to detect effects of exercise training related to skin blood flow.

Funder

Shaanxi Province Basic Research Program of Natural Science

Publisher

MDPI AG

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3