Power Transformer Diagnosis Based on Dissolved Gases Analysis and Copula Function

Author:

Zhang Xiaoqin,Zhu Hongbin,Li Bo,Wu Ruihan,Jiang JunORCID

Abstract

The traditional DGA (Dissolved Gas Analysis) diagnosis method does not consider the dependence between fault characteristic gases and uses the relationship between gas ratio coding and fault type to make the decision. As a tool of the dependence mechanism between variables, a copula function can effectively analyze the correlation between variables when it cannot determine whether the linear correlation coefficient can correctly measure the correlation between variable relationships. In this paper, the edge variable of a copula function is selected from the fault characteristic gas of a transformer, and the distribution type of the edge variable is fitted at the same time. Then, Bayesian estimation with the Gaussian residual likelihood function is used to fit the parameters of a copula function and a copula function is selected to describe the optimal dependence of the fault characteristic gas of transformer. The relationship between a copula function and the state of transformer is studied. The results show that the copula function boundary with hydrocarbon gas as edge variable can divide the transformer as healthy or defective state. When the cumulative distribution probability (CDF) value of the dissolved gas in the oil in the copula function is close to 0.8, the fluctuation of its gas concentration leads to a sharp change in the probability. Therefore, the analysis of dissolved gas in oil based on a copula function can be used as a powerful technical solution for oil-immersed power transformer fault diagnosis.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bivariate Modeling of Normalized Energy Intensity of Oil and Paper for Determining the Health Index of In-Service Transformers and Reactors;IEEE Transactions on Industry Applications;2024-01

2. A State Diagnosis Method for Distribution Transformer Device Based on Cloud Edge Collaboration;2023 5th International Conference on Electrical Engineering and Control Technologies (CEECT);2023-12-15

3. Research on transformer fault diagnosis based on ISOMAP and IChOA‐LSSVM;IET Electric Power Applications;2023-02-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3