Topology Optimization of Metal and Carbon Fiber Reinforced Plastic (CFRP) Laminated Battery-Hanging Structure

Author:

Chen Jiaju,Xu Yanan,Gao Yunkai

Abstract

This study addressed the topology optimization of a carbon fiber reinforced plastic (CFRP) laminated battery-hanging structure of an electric vehicle. To accommodate parameterization for thickness and orientation of CFRP materials, the discrete material and thickness optimization (DMTO) technique was adopted. To include metal material as a reinforcement structure into the optimization simultaneously, the DMTO technique was extended here to achieve concurrent optimization of CFRP thickness topology, CFRP orientation selection and the topology of the metal reinforcement plate. Manufacturing constraints were applied, including suppressing intermediate void across the thickness direction of the laminate, contiguity constraint and the symmetrical layers. Sensitivities of the objective function were derived with respect to design variables. To calculate analytical sensitivities, finite element analysis was conducted and strain vectors were exported from a commercial software (ABAQUS) into a mathematical analysis tool (MATLAB). The design objective was to minimize the local displacement subject to the constraints of manufacturing and mass fraction. The mechanical performance of the optimized CFRP structure was compared with the original steel structure. To validate the optimization results, a prototype of the CFRP battery-hanging structure was fabricated and experimental testing was conducted. The results show that the total mass of the CFRP battery-hanging structure was reduced by 34.3% when compared with the steel one, while the mechanical property was improved by 25.3%.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3