Key Role of the Dispersion of Carbon Nanotubes (CNTs) within Epoxy Networks on their Ability to Release

Author:

Pras Maxime,Gérard Jean-François,Golanski Luana,Quintard Guilhem,Duchet-Rumeau Jannick

Abstract

Carbon nanotube (CNT)-reinforced nanocomposites represent a unique opportunity in terms of designing advanced materials with mechanical reinforcement and improvements in the electrical and thermal conductivities. However, the toxic effects of these composites on human health have been studied, and very soon, some regulations on CNTs and on composites based on CNTs will be enacted. That is why the release of CNTs during the nanocomposite lifecycle must be controlled. As the releasing depends on the interfacial strength that is stronger between CNTs and polymers compared to CNTs in a CNT agglomerate, two dispersion states—one poorly dispersed versus another well dispersed—are generated and finely described. So, the main aim of this study is to check if the CNT dispersion state has an influence on the CNT releasing potential in the nanocomposite. To well tailor and characterize the CNT dispersion state in the polymer matrix, electronic microscopies (SEM and TEM) and also rheological analysis are carried out to identify whether CNTs are isolated, in bundles, or in agglomerates. When the dispersion state is known and controlled, its influence on the polymerization kinetic and on mechanical properties is discussed. It appears clearly that in the case of a good dispersion state, strong interfaces are generated, linking the isolated nanotubes with the polymer, whereas the CNT cohesion in an agglomerate seems much more weak, and it does not provide any improvement to the polymer matrix. Raman spectroscopy is relevant to analyze the interfacial properties and allows the relationship with the releasing ability of nanocomposites; i.e., CNTs poorly dispersed in the matrix are more readily released when compared to well-dispersed nanocomposites. The tribological tests confirm from released particles granulometry and observations that a CNT dispersion state sufficiently achieved in the nanocomposite avoids single CNT releasing under those solicitations.

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3