Study on the Anti-Biodegradation Property of Tunicate Cellulose

Author:

Cheng Yanan,Mondal Ajoy Kanti,Wu Shuai,Xu Dezhong,Ning Dengwen,Ni Yonghao,Huang FangORCID

Abstract

Tunicate is a kind of marine animal, and its outer sheath consists of almost pure Iβ crystalline cellulose. Due to its high aspect ratio, tunicate cellulose has excellent physical properties. It draws extensive attention in the construction of robust functional materials. However, there is little research on its biological activity. In this study, cellulose enzymatic hydrolysis was conducted on tunicate cellulose. During the hydrolysis, the crystalline behaviors, i.e., crystallinity index (CrI), crystalline size and degree of polymerization (DP), were analyzed on the tunicate cellulose. As comparisons, similar hydrolyses were performed on cellulose samples with relatively low CrI, namely α-cellulose and amorphous cellulose. The results showed that the CrI of tunicate cellulose and α-cellulose was 93.9% and 70.9%, respectively; and after 96 h of hydrolysis, the crystallinity, crystalline size and DP remained constant on the tunicate cellulose, and the cellulose conversion rate was below 7.8%. While the crystalline structure of α-cellulose was significantly damaged and the cellulose conversion rate exceeded 83.8% at the end of 72 h hydrolysis, the amorphous cellulose was completely converted to glucose after 7 h hydrolysis, and the DP decreased about 27.9%. In addition, tunicate cellulose has high anti-mold abilities, owing to its highly crystalized Iβ lattice. It can be concluded that tunicate cellulose has significant resistance to enzymatic hydrolysis and could be potentially applied as anti-biodegradation materials.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Polymers and Plastics,General Chemistry

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3